alex.dev@portfolio:~$ article

Designing Feature Stores for Real-Time ML Systems

How to architect feature stores with Feast and Redis for sub-millisecond feature retrieval in production fraud detection and recommendation systems.

Published in Category:

MLOps

MLOps

AI Engineering

AI Engineering

Published on:

Read time:

New This Month

This quality update brings canvas and layer panel improvements. We've updated the Component symbol throughout the app to differentiate it from Grids. Plus, we've made Primary Breakpoints and Variants more distinct in the left panel, making it easier to see if you're editing the primary or an instance. Breakpoints will now also show the ranges in the layer panel. See more updates below.

From January

Last month, we added support for automatic tinting and new layout options for components, plus a whole lot of fixes and improvements. If you give your Page a Fill color, this will now also tint browsers like Safari and will ensure you don't get plain white backgrounds when overscrolling on any mobile device. Plus, we've added support for Min Max sizing to all Smart and Code components, greatly simplifying many common layouts and patterns. See the full changelog below.

  • We automatically set the body background, based on your Page's fill color

  • You can now override the body background and customize per breakpoint

  • We now support Min Max sizing for all Smart and Code Component

  • We now consistently show the Min Max hint within the property panel

  • You can now use all alignment options for layers with Position set to Fixed

  • We now inform you if a parent layer height changes due to layout edits

  • We improved the Radius and Padding controls, no longer resetting values

  • Number inputs split in four no longer show steppers, so longer values fit

  • We improved Appear Effects using Scale with Spring transitions

MLOps

AI Engineering

AI Systems

Infrastructure

0 Minute Read

Ray Cluster, কেন?

এই সব কিছু আসলে একজন মেশিন লার্নিং ইঞ্জিনিয়ারের সমাধান করার কথা না, কিন্তু তারপরও তাকে নিজেই করতে হয় নতুবা প্ল্যাটফর্ম ইঞ্জিনিয়ারদের সাহায্য নিতে হয়। মজার ব্যাপার হচ্ছে, এভাবেই আমরা যাকে "মেশিন লার্নিং ইঞ্জিনিয়ারিং" বলছি, সেটা কিন্তু ধীরে ধীরে আল্টিমেটলি "সফটওয়্যার ইঞ্জিনিয়ারিং"-ই হয়ে যাচ্ছে। তো এই সিনারিওটা আমরা মেশিন লার্নিং ইঞ্জিনিয়ার হিসেবে কীভাবে সমাধান করতে পারি ? আমরা তা করতে পারি Ray ক্লাস্টার বিল্ড করার মাধ্যমে। Ray মূলত একটা ডিস্ট্রিবিউটেড কম্পিউটিং ফ্রেমওয়ার্ক, যেটা এই মেশিন লার্নিং ওয়ার্কলোড কে ক্লাস্টারে থাকা নোডগুলোর মধ্যে খুব ইফেশিয়েন্টলি ডিস্ট্রিবিউট করে দেয়।

MLOps

AI Engineering

AI Systems

Infrastructure

0 Minute Read

Ray Cluster, কেন?

এই সব কিছু আসলে একজন মেশিন লার্নিং ইঞ্জিনিয়ারের সমাধান করার কথা না, কিন্তু তারপরও তাকে নিজেই করতে হয় নতুবা প্ল্যাটফর্ম ইঞ্জিনিয়ারদের সাহায্য নিতে হয়। মজার ব্যাপার হচ্ছে, এভাবেই আমরা যাকে "মেশিন লার্নিং ইঞ্জিনিয়ারিং" বলছি, সেটা কিন্তু ধীরে ধীরে আল্টিমেটলি "সফটওয়্যার ইঞ্জিনিয়ারিং"-ই হয়ে যাচ্ছে। তো এই সিনারিওটা আমরা মেশিন লার্নিং ইঞ্জিনিয়ার হিসেবে কীভাবে সমাধান করতে পারি ? আমরা তা করতে পারি Ray ক্লাস্টার বিল্ড করার মাধ্যমে। Ray মূলত একটা ডিস্ট্রিবিউটেড কম্পিউটিং ফ্রেমওয়ার্ক, যেটা এই মেশিন লার্নিং ওয়ার্কলোড কে ক্লাস্টারে থাকা নোডগুলোর মধ্যে খুব ইফেশিয়েন্টলি ডিস্ট্রিবিউট করে দেয়।

MLOps

AI Engineering

AI Systems

Infrastructure

0 Minute Read

Ray Cluster, কেন?

এই সব কিছু আসলে একজন মেশিন লার্নিং ইঞ্জিনিয়ারের সমাধান করার কথা না, কিন্তু তারপরও তাকে নিজেই করতে হয় নতুবা প্ল্যাটফর্ম ইঞ্জিনিয়ারদের সাহায্য নিতে হয়। মজার ব্যাপার হচ্ছে, এভাবেই আমরা যাকে "মেশিন লার্নিং ইঞ্জিনিয়ারিং" বলছি, সেটা কিন্তু ধীরে ধীরে আল্টিমেটলি "সফটওয়্যার ইঞ্জিনিয়ারিং"-ই হয়ে যাচ্ছে। তো এই সিনারিওটা আমরা মেশিন লার্নিং ইঞ্জিনিয়ার হিসেবে কীভাবে সমাধান করতে পারি ? আমরা তা করতে পারি Ray ক্লাস্টার বিল্ড করার মাধ্যমে। Ray মূলত একটা ডিস্ট্রিবিউটেড কম্পিউটিং ফ্রেমওয়ার্ক, যেটা এই মেশিন লার্নিং ওয়ার্কলোড কে ক্লাস্টারে থাকা নোডগুলোর মধ্যে খুব ইফেশিয়েন্টলি ডিস্ট্রিবিউট করে দেয়।

MLOps

Infrastructure

15 Minute Read

𝗛𝗼𝘄 𝘁𝗼 𝗕𝘂𝗶𝗹𝗱 𝗘𝗳𝗳𝗶𝗰𝗶𝗲𝗻𝘁 𝗮𝗻𝗱 𝗖𝗼𝘀𝘁 𝗘𝗳𝗳𝗲𝗰𝘁𝗶𝘃𝗲 𝗗𝗮𝘁𝗮 𝗪𝗮𝗿𝗲𝗵𝗼𝘂𝘀𝗲𝘀 𝗳𝗼𝗿 𝗦𝗠𝗕𝘀?

Modernizing data warehouses with a hybrid Azure approach enables centralized storage, real‑time analytics, and secure integration across tools like Synapse, Data Lake, Stream Analytics, and Power BI to deliver scalable insights and compliance‑ready infrastructure.

MLOps

Infrastructure

15 Minute Read

𝗛𝗼𝘄 𝘁𝗼 𝗕𝘂𝗶𝗹𝗱 𝗘𝗳𝗳𝗶𝗰𝗶𝗲𝗻𝘁 𝗮𝗻𝗱 𝗖𝗼𝘀𝘁 𝗘𝗳𝗳𝗲𝗰𝘁𝗶𝘃𝗲 𝗗𝗮𝘁𝗮 𝗪𝗮𝗿𝗲𝗵𝗼𝘂𝘀𝗲𝘀 𝗳𝗼𝗿 𝗦𝗠𝗕𝘀?

Modernizing data warehouses with a hybrid Azure approach enables centralized storage, real‑time analytics, and secure integration across tools like Synapse, Data Lake, Stream Analytics, and Power BI to deliver scalable insights and compliance‑ready infrastructure.

MLOps

Infrastructure

15 Minute Read

𝗛𝗼𝘄 𝘁𝗼 𝗕𝘂𝗶𝗹𝗱 𝗘𝗳𝗳𝗶𝗰𝗶𝗲𝗻𝘁 𝗮𝗻𝗱 𝗖𝗼𝘀𝘁 𝗘𝗳𝗳𝗲𝗰𝘁𝗶𝘃𝗲 𝗗𝗮𝘁𝗮 𝗪𝗮𝗿𝗲𝗵𝗼𝘂𝘀𝗲𝘀 𝗳𝗼𝗿 𝗦𝗠𝗕𝘀?

Modernizing data warehouses with a hybrid Azure approach enables centralized storage, real‑time analytics, and secure integration across tools like Synapse, Data Lake, Stream Analytics, and Power BI to deliver scalable insights and compliance‑ready infrastructure.

MLOps

Infrastructure

12 Minute Read

Building Production ML Pipelines with Kubernetes

A deep dive into designing fault-tolerant, scalable ML training and serving pipelines on K8s — from resource scheduling to model versioning.

MLOps

Infrastructure

12 Minute Read

Building Production ML Pipelines with Kubernetes

A deep dive into designing fault-tolerant, scalable ML training and serving pipelines on K8s — from resource scheduling to model versioning.

MLOps

Infrastructure

12 Minute Read

Building Production ML Pipelines with Kubernetes

A deep dive into designing fault-tolerant, scalable ML training and serving pipelines on K8s — from resource scheduling to model versioning.

© Tahnik Ahmed | 2026