alex.dev@portfolio:~$ article

Why AI Engineers Need to Understand GPU Memory Hierarchy

From global memory to shared memory to registers — understanding the GPU memory hierarchy is critical for writing efficient CUDA kernels and optimizing ML workloads.

Published in Category:

AI Systems

AI Systems

MLOps

MLOps

Published on:

Read time:

Choose Compelling Topics

Use analytics tools to understand demographic data and user behavior. Tailor your content to address audience needs and interests, solving their specific problems. Conduct keyword research with tools like Google Keyword Planner or SEMrush. Analyze industry trends and competitors to select relevant and trending topics that improve SEO. Utilize headline analyzers like CoSchedule's Headline Analyzer. Craft titles that are clear, specific, and contain high-ranking keywords. Use power words to increase click-through rates.

Organize Your Content

Implement a clear structure using HTML tags for headings (H1, H2, H3) and lists (<ul>, <ol>). This enhances readability and SEO. Leverage CSS for formatting to improve UX. Embed high-quality images, infographics, charts, and graphs. Use Framer for creating visuals and optimize them with alt text for SEO. Ensure they are mobile-responsive. Place keywords naturally within the content, especially in headings and subheadings. Optimize meta descriptions, image alt texts, and use internal and external links.

Pagination and SEO

Consider adding pagination for extensive content lists, enhancing performance by reducing load times and improving user experience by making large amounts of content more readable and navigable. Additionally, pagination benefits SEO by facilitating easier search engine crawling and reducing bounce rates. By selecting a list of content coming from the blog, you can click the blue plus icon at the bottom to add infinite scrolling or a load more button. If you add pagination with infinite scrolling, try to avoid positioning layouts like pivots and footers below the loading content. This will help minimize layout shifts, thus not harming SEO.

Monitor Performance

Utilize the built-in Framer analytics to track performance metrics and adjust content strategy based on data insights. By combining these best practices with technical best techniques, you can create a blog that not only engages and informs but also performs well in search rankings and user engagement. Happy blogging!

MLOps

AI Engineering

AI Systems

Infrastructure

0 Minute Read

Ray Cluster, কেন?

এই সব কিছু আসলে একজন মেশিন লার্নিং ইঞ্জিনিয়ারের সমাধান করার কথা না, কিন্তু তারপরও তাকে নিজেই করতে হয় নতুবা প্ল্যাটফর্ম ইঞ্জিনিয়ারদের সাহায্য নিতে হয়। মজার ব্যাপার হচ্ছে, এভাবেই আমরা যাকে "মেশিন লার্নিং ইঞ্জিনিয়ারিং" বলছি, সেটা কিন্তু ধীরে ধীরে আল্টিমেটলি "সফটওয়্যার ইঞ্জিনিয়ারিং"-ই হয়ে যাচ্ছে। তো এই সিনারিওটা আমরা মেশিন লার্নিং ইঞ্জিনিয়ার হিসেবে কীভাবে সমাধান করতে পারি ? আমরা তা করতে পারি Ray ক্লাস্টার বিল্ড করার মাধ্যমে। Ray মূলত একটা ডিস্ট্রিবিউটেড কম্পিউটিং ফ্রেমওয়ার্ক, যেটা এই মেশিন লার্নিং ওয়ার্কলোড কে ক্লাস্টারে থাকা নোডগুলোর মধ্যে খুব ইফেশিয়েন্টলি ডিস্ট্রিবিউট করে দেয়।

MLOps

AI Engineering

AI Systems

Infrastructure

0 Minute Read

Ray Cluster, কেন?

এই সব কিছু আসলে একজন মেশিন লার্নিং ইঞ্জিনিয়ারের সমাধান করার কথা না, কিন্তু তারপরও তাকে নিজেই করতে হয় নতুবা প্ল্যাটফর্ম ইঞ্জিনিয়ারদের সাহায্য নিতে হয়। মজার ব্যাপার হচ্ছে, এভাবেই আমরা যাকে "মেশিন লার্নিং ইঞ্জিনিয়ারিং" বলছি, সেটা কিন্তু ধীরে ধীরে আল্টিমেটলি "সফটওয়্যার ইঞ্জিনিয়ারিং"-ই হয়ে যাচ্ছে। তো এই সিনারিওটা আমরা মেশিন লার্নিং ইঞ্জিনিয়ার হিসেবে কীভাবে সমাধান করতে পারি ? আমরা তা করতে পারি Ray ক্লাস্টার বিল্ড করার মাধ্যমে। Ray মূলত একটা ডিস্ট্রিবিউটেড কম্পিউটিং ফ্রেমওয়ার্ক, যেটা এই মেশিন লার্নিং ওয়ার্কলোড কে ক্লাস্টারে থাকা নোডগুলোর মধ্যে খুব ইফেশিয়েন্টলি ডিস্ট্রিবিউট করে দেয়।

MLOps

AI Engineering

AI Systems

Infrastructure

0 Minute Read

Ray Cluster, কেন?

এই সব কিছু আসলে একজন মেশিন লার্নিং ইঞ্জিনিয়ারের সমাধান করার কথা না, কিন্তু তারপরও তাকে নিজেই করতে হয় নতুবা প্ল্যাটফর্ম ইঞ্জিনিয়ারদের সাহায্য নিতে হয়। মজার ব্যাপার হচ্ছে, এভাবেই আমরা যাকে "মেশিন লার্নিং ইঞ্জিনিয়ারিং" বলছি, সেটা কিন্তু ধীরে ধীরে আল্টিমেটলি "সফটওয়্যার ইঞ্জিনিয়ারিং"-ই হয়ে যাচ্ছে। তো এই সিনারিওটা আমরা মেশিন লার্নিং ইঞ্জিনিয়ার হিসেবে কীভাবে সমাধান করতে পারি ? আমরা তা করতে পারি Ray ক্লাস্টার বিল্ড করার মাধ্যমে। Ray মূলত একটা ডিস্ট্রিবিউটেড কম্পিউটিং ফ্রেমওয়ার্ক, যেটা এই মেশিন লার্নিং ওয়ার্কলোড কে ক্লাস্টারে থাকা নোডগুলোর মধ্যে খুব ইফেশিয়েন্টলি ডিস্ট্রিবিউট করে দেয়।

MLOps

Infrastructure

15 Minute Read

𝗛𝗼𝘄 𝘁𝗼 𝗕𝘂𝗶𝗹𝗱 𝗘𝗳𝗳𝗶𝗰𝗶𝗲𝗻𝘁 𝗮𝗻𝗱 𝗖𝗼𝘀𝘁 𝗘𝗳𝗳𝗲𝗰𝘁𝗶𝘃𝗲 𝗗𝗮𝘁𝗮 𝗪𝗮𝗿𝗲𝗵𝗼𝘂𝘀𝗲𝘀 𝗳𝗼𝗿 𝗦𝗠𝗕𝘀?

Modernizing data warehouses with a hybrid Azure approach enables centralized storage, real‑time analytics, and secure integration across tools like Synapse, Data Lake, Stream Analytics, and Power BI to deliver scalable insights and compliance‑ready infrastructure.

MLOps

Infrastructure

15 Minute Read

𝗛𝗼𝘄 𝘁𝗼 𝗕𝘂𝗶𝗹𝗱 𝗘𝗳𝗳𝗶𝗰𝗶𝗲𝗻𝘁 𝗮𝗻𝗱 𝗖𝗼𝘀𝘁 𝗘𝗳𝗳𝗲𝗰𝘁𝗶𝘃𝗲 𝗗𝗮𝘁𝗮 𝗪𝗮𝗿𝗲𝗵𝗼𝘂𝘀𝗲𝘀 𝗳𝗼𝗿 𝗦𝗠𝗕𝘀?

Modernizing data warehouses with a hybrid Azure approach enables centralized storage, real‑time analytics, and secure integration across tools like Synapse, Data Lake, Stream Analytics, and Power BI to deliver scalable insights and compliance‑ready infrastructure.

MLOps

Infrastructure

15 Minute Read

𝗛𝗼𝘄 𝘁𝗼 𝗕𝘂𝗶𝗹𝗱 𝗘𝗳𝗳𝗶𝗰𝗶𝗲𝗻𝘁 𝗮𝗻𝗱 𝗖𝗼𝘀𝘁 𝗘𝗳𝗳𝗲𝗰𝘁𝗶𝘃𝗲 𝗗𝗮𝘁𝗮 𝗪𝗮𝗿𝗲𝗵𝗼𝘂𝘀𝗲𝘀 𝗳𝗼𝗿 𝗦𝗠𝗕𝘀?

Modernizing data warehouses with a hybrid Azure approach enables centralized storage, real‑time analytics, and secure integration across tools like Synapse, Data Lake, Stream Analytics, and Power BI to deliver scalable insights and compliance‑ready infrastructure.

MLOps

Infrastructure

12 Minute Read

Building Production ML Pipelines with Kubernetes

A deep dive into designing fault-tolerant, scalable ML training and serving pipelines on K8s — from resource scheduling to model versioning.

MLOps

Infrastructure

12 Minute Read

Building Production ML Pipelines with Kubernetes

A deep dive into designing fault-tolerant, scalable ML training and serving pipelines on K8s — from resource scheduling to model versioning.

MLOps

Infrastructure

12 Minute Read

Building Production ML Pipelines with Kubernetes

A deep dive into designing fault-tolerant, scalable ML training and serving pipelines on K8s — from resource scheduling to model versioning.

© Tahnik Ahmed | 2026